Invariant Differential Operators for Non-Compact Lie Groups: Parabolic Subalgebras
نویسنده
چکیده
In the present paper we start the systematic explicit construction of invariant differential operators by giving explicit description of one of the main ingredients the cuspidal parabolic subalgebras. We explicate also the maximal parabolic subalgebras, since these are also important even when they are not cuspidal. Our approach is easily generalised to the supersymmetric and quantum group settings and is necessary for applications to string theory and integrable models.
منابع مشابه
Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملLie symmetries of semi-linear Schrödinger and diffusion equations
Conditional Lie symmetries of semi-linear 1D Schrödinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrödinger equations become related to the parabolic and almostparabolic subalgebras of a three-dimensional conformal Lie algebra (conf3)C. We consider nonhermitian represen...
متن کاملDynamical symmetries of semi-linear Schrödinger and diffusion equations
Conditional and Lie symmetries of semi-linear 1D Schrödinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrödinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf3)C. We consider non-hermitian re...
متن کاملLie Subalgebras of Differential Operators on the Super Circle
We classify anti-involutions of Lie superalgebra ŜD preserving the principal gradation, where ŜD is the central extension of the Lie superalgebra of differential operators on the super circle S. We clarify the relations between the corresponding subalgebras fixed by these anti-involutions and subalgebras of ĝl∞|∞ of types OSP and P . We obtain a criterion for an irreducible highest weight modul...
متن کامل